VOL. XLI NO. 1

Notes

Sch 36605, STRUCTURE OF A NOVEL NUCLEOSIDE

RAYMOND COOPER, MICHAEL CONOVER and MAHESH PATEL

Department of Microbial Products, Schering Plough Corporation, Bloomfield, New Jersey 07003, U.S.A.

(Received for publication July 14, 1987)

A novel nucleoside antibiotic, Sch 36605, has been isolated from the culture filtrate of a *Streptomycete* sp.¹⁾. All the physico-chemical and spectroscopic data presented herein indicate this compound is a new blasticidin compound. A second closely related component, Sch 36606, was isolated¹⁾ together with Sch 36605. This compound has been characterized and identified as leucylblasticidin S²⁾.

Sch 36605 (1) is a water soluble basic compound: MP >230°C (dec); $[\alpha]_D^{26}$ +58.2° (c 0.1, H₂O); IR (KBr) cm⁻¹ 3300 (br, NH and OH), 1650 (CONH), 1000~1150; UV λ_{max} (H₂O, pH 7) nm (ε) 272 (8,350); λ_{max} (0.01 N HCl) nm (ε) 279 (11,240).

The molecular weight of Sch 36605 $(C_{24}H_{39}N_9O_7)$ was established as 565 on the basis of fast atom bombardment (FAB) mass spectral data. A protonated molecular ion $M+H^+$, m/z 566 was observed. High resolution data is as follows: Mass measured, 566.2970; mass calculated 566.3040, for a composition of $C_{24}H_{40}N_{2}O_{7}$. The monosodiated ion at m/z588 and disodiated ion at m/z 610 were observed. The most intense fragment ion m/z 425 results from the cleavage of 5-hydroxymethylcytosine $(M+H^+-141, m/z 425)$. Other fragmentation pathways occur due to cleavage of leucine and blastidic acid from the molecule.

On acidic hydrolysis (2 N HCl, reflux, 2 hours), 1 gave 5-hydroxymethylcytosine and leucine, that were identified chromatographically by comparison with authentic samples. Dansylation of 1 followed by acid hydrolysis (6 N HCl, 17 hours, 105° C) gave dansylated leucine identified by co-chromatography with an authentic sample[†]. Thus in 1, leucine is linked through the *C*-carboxy terminus.

The ¹H NMR in D₂O of Sch 36605 is consistent with the proposed structure. Characteristic ¹H NMR values are as follows: δ 0.80 (6H, br d, 2×CH₃), 2.92 (3H, s, NCH₃), 4.34 (2H, s, CH₂OH), 4.57 (1H, m, OCHCOOH), 5.75 and 6.03 (each 1H, br, J=9 Hz, CH=CH), 6.4 (1H, br s, OCHN), 7.55 (1H, s, C=CH).

The ¹³C NMR spectrum of 1 shows the presence of 24 carbon atoms. Fully decoupled and insensitive nuclear enhanced polarization transfer (INEPT) spectra led to the assignments of the carbon signals. The data for 1, 2 and blasticidin S (3) are presented in Table 1. The assignments are in good agreement with the reported values for 3^{s_0} and the closely related compound mildiomycin⁴⁾.

The molecular weight of Sch 36606 (2) is established as 535 on the basis of FAB mass spectral data. A protonated molecular ion, $M+H^+$, m/z 536 was observed. The major

[†] TLC performed on polyamide sheets developing with 1.5% aq formic acid.

Carbon No.ª	Sch 36605	Sch 36606	Blasticidin S			
C-1	166.1	167.1	167.1			
C-2	157.4	157.3	157.3			
C-3	107.8	126.5	129.6			
C-4	142.5	143.6	143.7			
C-5	58.5	-	—			
C-6	80.3	80.2	80.5			
C-7	126.5	126.5	127.1			
C-8	133.9	133.5	133.8			
C-9	45.6	45.9	46.4			
C-10	78.5	78.2	78.5			
C-11	175.6	175.6	175.8			
C-12	172.9	172.2	171.7			
C-13, 15	41.3, 31.3	41.5, 31.1	38.0, 30.0			
C-16, 21	48.0, 43.8	47.9,46.0	47.4			
C-14	46.2	46.2	47.4			
C-17	36.5	36.4	36.6			
C-18	158.3	158.3	158.3			
C-19	177.2	172.1				
C-20	53.7	52.8				
C-22	25.0	24.6				
C-23, 24	22.0, 22.1	21.7, 22.6				

Table 1. ¹³C NMR data obtained on a Varian XL-400 instrument; spectra taken in D_2O (δ ppm relative to dioxane 67.4 ppm).

a Refers to numbering in 1.

fragment ion m/z 435 represents the cleavage of cytosine from **2**, and thus follows the same fragmentation pattern observed for **1** and other related nucleoside antibiotics⁵⁾. The UV data for **2** are as follows: λ_{max} (H₂O, pH 7) nm (ε) 269 (8,000) and (0.01 N HCl) nm (ε) 276 (11,000). Acidic hydrolysis of **2** (2 N HCl, reflux 2 hours) gave cytosine and leucine that were identified with the authentic samples.

The ¹³C NMR data for 2 are given in Table 1. The data are consistent with the structure of 2 and establish the identity as leucylblasticidin S.

The configurations of amino acids and of the pyran-3-ene ring were determined as follows. Acid hydrolysis of 1 and 2 ($6 \times HCl$, $105^{\circ}C$, 17 hours) and blasticidin S (3)[†] yields blastidic acid⁶⁾ and leucine, together with other hydrolysis products. The amino acids were separated and purified by passing the acid hydrolysate through Amberlite IRA-401S (OH⁻). Elution of the resin with H₂O gave blastidic acid, followed by elution with 0.5 \times HCl to give leucine. The specific rotations for each sample of blastidic

Table	2. 5	Specific	rotations	of	blastidic	acid

Compound	$[\alpha]_{\rm D}^{26}$ (c 0.5, H ₂ O)
Blastidic acid (Sch 36605)	+6.3°
Blastidic acid (blasticidin S)	+9.1°

Fig. 1. Stereochemical form of the pyran-3-ene ring.

acid were measured and within experimental error are in good agreement. The results are shown in Table 2. Previous reports show that blastidic acid obtained from blasticidin S was assigned the L-configuration by comparative ORD studies⁶⁾. On the basis of our rotation measurements of blastidic acids obtained from 1, 2 and 3, these acids are identical and are assigned the L-configuration in 1 and 2. The configuration of leucine, derived from 1 and 2, as the 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl isothiocyanate (GITC) derivative⁷⁾ was determined by HPLC using peak enhancement with an authentic sample and shown to be in the L-form.

We examined the absolute configuration of the pyran-3-ene ring indicated in Fig. 1. The stereochemistry of the 9-H and 10-H protons should be diaxial on the basis of the coupling constant $J_{9,10}=10$ Hz in the ¹H NMR spectrum of 1. Also the stereochemistry of the 6-H proton was assigned axial from $J_{6,7}=10$ Hz and $J_{e,8}=2$ Hz. The three bulky groups in the pyran-3-ene ring should reasonably be all equatorial. Only two sterically stable stereostructures of β -D or α -L could be permitted among all the possible isomers of the pyran-3-ene as shown in Fig. 1.

CD spectra for 1, 2 and 3 are shown in Fig. 2. They all show a negative cotton effect with the λ_{max} close to 270 nm. The absolute configuration of blasticidin S was previously reported as possessing a pyran-3-ene ring in the β -D form⁶⁾. Since the signs of the cotton effect are identical for all three compounds (and the amino acids have the same L-configuration) it is reasonable to assume the β -D form for the pyran-3-ene ring

[†] A sample of blasticidin S was kindly supplied by Kaken Pharmaceutical Co., Ltd., Japan.

Fig. 2. CD spectra of Sch 36605 (1), Sch 36606 (2), and blasticidin S (3), taken in H_2O , 0.1 mg/ml.

of 1 and 2. Thus the structure of Sch 36605 (1) inclusive of stereochemistry is 4-[3-(2-amino-4-methylvaleramido)-5-(1-methylguanidino)valer-amido]-1-(5-hydroxymethyl-4-amino-2-oxo-1-(2H)-pyrimidinyl)-1,2,3,4-tetradeoxy-D-erythrohex-2-enopyranuronic acid.

Acknowledgments

The authors wish to thank Dr. PUAR for NMR data,

Dr. PRAMANIK for mass spectral data and Mr. S. MITTLEMAN for obtaining CD spectra.

References

- GULLO, V.; M. CONOVER, R. COOPER, C. FEDERBUSH, A. C. HORAN, T. KUNG, J. MARQUEZ, M. PATEL & A. WATNICK: Sch 36605, a novel anti-inflammatory compound. Taxonomy fermentation, isolation and biological properties. J. Antibiotics 41: 20~24, 1988
- SETO, H.; N. ŌTAKE & H. YONEHARA: Studies on the biosynthesis of blasticidin S. Agric. Biol. Chem. 32: 1299~1305, 1968
- ÖTAKE, N.; S. TAKEUCHI, T. ENDO & H. YONE-HARA: The structure of blasticidin S. Tetrahedron Lett. 1965: 1411~1419, 1965
- HARADA, S. & T. KISHI: Isolation and characterization of mildiomycin, a new nucleoside antibiotic. J. Antibiotics 31: 519~524, 1978
- MIERZWA, R.; R. COOPER & B. PRAMANIK: Photodiode array detection of peptide-nucleoside antibiotics. J. Chromatogr., in press
- YONEHARA, H. & N. ÖTAKE: Absolute configuration of blasticidin S. Tetrahedron Lett. 1966: 3785~3791, 1966
- KINOSHITA, T.; Y. KASAHARA & N. NIMURA: Reversed phase high performance liquid chromatographic resolution of non esterified enantiomeric amino acids by derivatization with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate and 2,3,4-tri-O-acetyl-β-D-arabinose pyranosyl isothiocyanate. J. Chromatogr. 210: 77~81, 1981